Среди передвигающихся по дну беспозвоночных животных не последнее место принадлежит кольчатым червям, одна из групп которых так и называется бродячими кольчецами. Змеевидно извиваясь всем телом и перебирая по дну пучками щетинок, они постоянно снуют в зарослях водорослей и гидроидов. Впрочем, некоторые из них на червей совершенно непохожи. Такова морская мышь — существо овальной формы, покрытое множеством тонких, переливающихся всеми цветами радуги щетинок. Благодаря укороченному мохнатому телу этот червь и получил свое название. По величине морская мышь скорее может сравниться с крысой, так как достигает 15 сантиметров в длину при ширине 6 сантиметров. Эти хищники поедают моллюсков, маленьких рачков, других кольчатых червей и гидроидов, которых они хватают двумя парами челюстей.
Как это ни странно, но по дну ходят также и некоторые рыбы. У морского петуха, или триглы, три первых луча грудных плавников не соединены плавательной перепонкой и видоизменены в длинные пальцевидные придатки. Перебирая этими лучами, морской петух ходит по дну в поисках пищи. Пальцевидные лучи служат рыбе одновременно органами вкуса. Запуская их в грунт, морской петух нащупывает там зарывшихся моллюсков, рачков, червей и другую живность, определяет пригодность их в пищу и только тогда выкапывает и поедает.
Когда планктонные организмы погибают, их полуразложившиеся тела падают на дно. Известковые и кремниевые скелетики планктеров вместе с минеральными частицами из речного стока образуют ил, который кишит бактериями, довершающими разложение органических веществ. Здесь обитают мельчайшие одноклеточные животные, питающиеся бактериальной флорой, здесь же, зарывшись в толщу ила, поселяются и более крупные морские животные — черви, моллюски, рачки, иглокожие и другие. Они питаются теми органическими остатками, бактериями и простейшими, которые содержатся в илистом грунте. Питательных веществ тут совсем немного, и, чтобы насытиться, все эти закапывающиеся организмы пропускают через свой кишечник огромное количество ила. Как правило, они без всякого выбора заглатывают все подряд, но некоторые способны отсортировывать пищевые частицы от несъедобных. Деятельность этих пожирателей ила приводит к полной утилизации органических веществ, падающих на дно из верхних слоев воды.
Расселение всех этих животных происходит лишь с помощью планктонных личинок. После того как пожиратели ила осядут на дно и зароются в грунт, они навсегда остаются на одном месте либо перемещаются на очень небольшие расстояния. Многих зарывающихся в грунт червей, моллюсков, морских ежей находят и съедают бродящие по дну хищники.
Все обитатели донных морских сообществ, будь то прикрепленные, бродячие или зарывающиеся, служат кормовой базой для разнообразных придонных рыб. Подводное продолжение материков и островов до глубины 200–500 метров, так называемый шельф, представляет собой великолепное угодье, где откармливаются косяки трески, морского окуня, камбал, палтусов и множества других промысловых рыб. На шельфе ведется наиболее интенсивный рыбный промысел.
Глава 3. Жители бездны
Теперь все знают, что Мировой океан населен от поверхности до самых больших глубин. Даже на дне глубочайшей Марианской впадины, превышающей 11 километров, имеется жизнь. Но еще совсем недавно считалось, что предельные глубины океана необитаемы. Оснований для этого имелось немало. Как известно, при погружении на каждые 10 метров давление увеличивается на 1 атмосферу. Значит, на глубине в 10 километров оно равно одной тысяче атмосфер. Какой же организм способен выдержать такое давление? Он должен быть расплющен в лепешку! Кроме того, в эту бездну не проникают даже самые слабые лучи света — там царит вечный мрак и вечный холод. Чем глубже опускать термометр в морскую воду, тем более низкую температуру он будет показывать. Легко рассчитать, что на дне глубочайших желобов температура близка к нулю, а может быть, она даже ниже нуля. Из-за отсутствия света в океанской пучине невозможен фотосинтез, а от атмосферного кислорода она отделена многокилометровым слоем воды, значит, там нечем дышать. Нет там также никакой пищи, значит, нет и жизни.
Проверить эти пессимистические предположения было не так-то просто. Технически несовершенные орудия лова позволяли добывать образцы лишь с относительно небольших глубин. Океан надежно хранил свою тайну.
Тем, кто незнаком с глубоководными исследованиями, задача кажется легко выполнимой. Для этого нужно только удлинить трос, на котором спускают необходимые приборы. Чтобы понять, насколько трудно добыть животных с большой глубины, нужно самому принять участие в морской экспедиции, снаряженной специально для этой цели. Почему экспедиция должна быть специальной? Разве нельзя провести эту работу попутно с другими исследованиями моря?
Оказывается, нельзя. Во-первых, необходимо иметь хорошо оборудованное большое судно. Во-вторых, нужны умелые и знающие моряки и ученые, способные справиться с этой трудной задачей. Наконец, следует помнить, что все глубоководные работы очень продолжительны, и времени ни на что другое уже не остается. Кроме всего прочего, организация такой экспедиции сопряжена с большими материальными затратами. Даже теперь во всем мире имеется считанное число судов, с которых можно вести работу на самых больших глубинах океана, а перед второй мировой войной их не было вообще.
В наш век завоевания космоса всем известны основные принципы ведения космических исследований, но, наверное, далеко не каждый представляет себе, как выглядит на практике изучение жизни в абиссали (на глубине 3,5–6 тысяч метров) и в ультраабиссали (свыше 6 тысяч метров).
Когда научно-исследовательское судно подойдет к намеченному району работ, первыми должны показать свое искусство капитан и штурманы. Глубоководный желоб обычно представляет собой узкую подводную долину шириной всего в несколько километров, а самая его нижняя часть имеет вид скорее щели. Нужно очень точно вывести судно в точку над этой невидимой глубиной. Сделав несколько галсов и прощупав дно с помощью эхолота, штурманы производят сложные расчеты, в которых учитываются сила, скорость и направление течений на разных глубинах, сила ветра и скорость сноса судна, время, необходимое для проведения работ, длина вытравляемого троса и многое другое. После этого судно уходит от своей цели и ложится в дрейф.
Капитан Немо недаром выбрал для своего «Наутилуса» девиз «Подвижный в подвижном». В море нет ничего застывшего, оно все время в движении. Ветер гонит исследовательское судно в одну сторону, поверхностное течение сносит его в другую. Глубоководное течение, идущее совсем в ином направлении, отклоняет опущенные в море приборы куда-то вбок. Все это нужно предвидеть и рассчитать так, чтобы через несколько часов, когда будет вытравлено положенное количество километров стального троса, орудие лова коснулось дна не где попало, а как раз на дне узкого желоба, на 10-километровой глубине.
Итак, судно легло в дрейф. Теперь наступает очередь палубной команды. Боцман уже стоит у пульта управления главной глубоководной лебедкой, матросы заняли свои места у огромного барабана, возле блоков, через которые проходит смазанный густым маслом толстый стальной трос. Биологи подтащили свой трал, над оснасткой которого они трудились целую неделю.
Имеется несколько модификаций биологического трала, но в общем это орудие представляет собой металлический каркас с привязанным к нему мешком из мелкоячеистой сети (дели). Тяжелые салазки трала скользят по дну, а его подборы захватывают с поверхности грунта находящихся там животных, а также камни и другие подводные предметы. Все это вместе с изрядной порцией ила или песка попадает в мешок.